Glutaminase is essential for the growth of triple-negative breast cancer cells with a deregulated glutamine metabolism pathway and its suppression synergizes with mTOR inhibition
نویسندگان
چکیده
Tumor cells display fundamental changes in metabolism and nutrient uptake in order to utilize additional nutrient sources to meet their enhanced bioenergetic requirements. Glutamine (Gln) is one such nutrient that is rapidly taken up by tumor cells to fulfill this increased metabolic demand. A vital step in the catabolism of glutamine is its conversion to glutamate by the mitochondrial enzyme glutaminase (GLS). This study has identified GLS a potential therapeutic target in breast cancer, specifically in the basal subtype that exhibits a deregulated glutaminolysis pathway. Using inducible shRNA mediated gene knockdown, we discovered that loss of GLS function in triple-negative breast cancer (TNBC) cell lines with a deregulated glutaminolysis pathway led to profound tumor growth inhibition in vitro and in vivo. GLS knockdown had no effect on growth and metabolite levels in non-TNBC cell lines. We rescued the anti-tumor effect of GLS knockdown using shRNA resistant cDNAs encoding both GLS isoforms and by addition of an α-ketoglutarate (αKG) analog thus confirming the critical role of GLS in TNBC. Pharmacological inhibition of GLS with the small molecule inhibitor CB-839 reduced cell growth and led to a decrease in mammalian target of rapamycin (mTOR) activity and an increase in the stress response pathway driven by activating transcription factor 4 (ATF4). Finally, we found that GLS inhibition synergizes with mTOR inhibition, which introduces the possibility of a novel therapeutic strategy for TNBC. Our study revealed that GLS is essential for the survival of TNBC with a deregulated glutaminolysis pathway. The synergistic activity of GLS and mTOR inhibitors in TNBC cell lines suggests therapeutic potential of this combination for the treatment of vulnerable subpopulations of TNBC.
منابع مشابه
Targeting glutaminase and mTOR
Comprehensive genomic and proteomic analyses demonstrate that there is nearly universal activation of the PI3K pathway in glioblastoma (GBM) patients [1]. Persistent PI3K signaling promotes GBM formation and tumor progression in genetic mouse models, establishing PI3K and its effecter mTOR as compelling molecular targets. mTOR, which has two distinct complexes, mTORC1 and mTORC2, is a protein k...
متن کاملGene Expression Changes in Pomegranate Peel Extract-Treated Triple-Negative Breast Cancer Cells
Background: Triple-negative breast cancer (TNBC) is treated with highly aggressive non-targeted chemotherapies. Safer and more effective therapeutic approaches than those currently in use are needed. Natural pomegranate peel extract (PPE) has recently been found to inhibit breast cancer progression; however, its mechanisms of action remain unclear. We hypothesized that transcriptional chan...
متن کاملNaringenin Enhances the Anti-Cancer Effect of Cyclophosphamide against MDA-MB-231 Breast Cancer Cells Via Targeting the STAT3 Signaling Pathway
Naringenin is a natural compound with potential anti-cancer effects against several cancer types. Also, its precise molecular mechanisms regarding tumor growth suppression has not been completely elucidated. In the current study the apoptosis-inducing and anti-proliferative effects of Naringenin together with cyclophosphamide were studied in breast cancer cells and the participation of JAK2/ST...
متن کاملGlutamine deprivation plus BPTES alters etoposide- and cisplatin-induced apoptosis in triple negative breast cancer cells
Glutamine provides cancer cells with the energy required to synthesize macromolecules. Methods which block glutamine metabolism in treatment of breast cancer inhibit oncogenic transformation and tumor growth. We investigated whether inhibiting glutamine metabolism produces effects that are synergistic with those produced by drugs which damage DNA in triple-negative breast cancer cells. HCC1937 ...
متن کاملTHE EFFECT OF QUINACRINE ON THE EXPRESSION OF WNT3A GENE IN MDA-MB 231 AND MCF7 BREAST CANCER CELL LINES
Background & Aims: Triple-negative breast cancer cells refer to any breast cancer that does not express the genes for the estrogen, progesterone, and HER2 receptors. The Wnt signaling pathway is important in the development and progression of various types of cancers. Quinacrine, a derivative of 9-aminoacridine, has been shown to inhibit the growth of several types of cancer cells. In this stud...
متن کامل